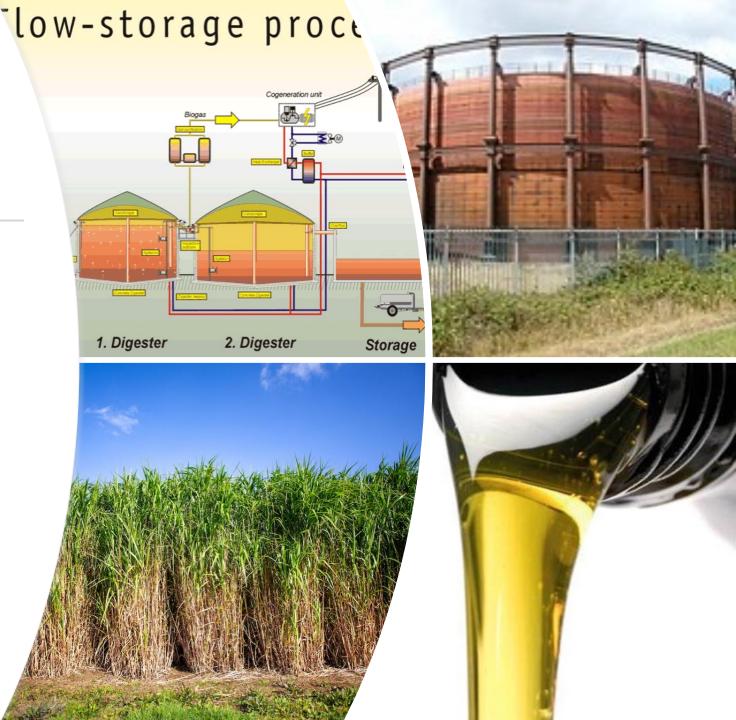
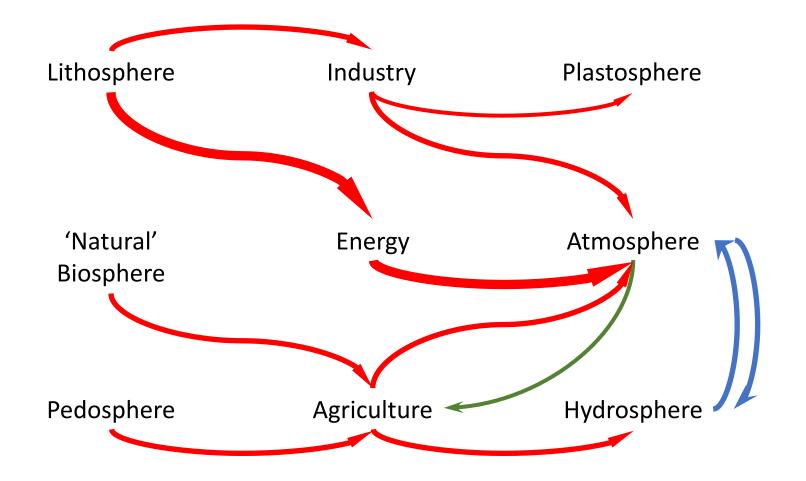


Bio, Energy and Storage -Where does it fit?

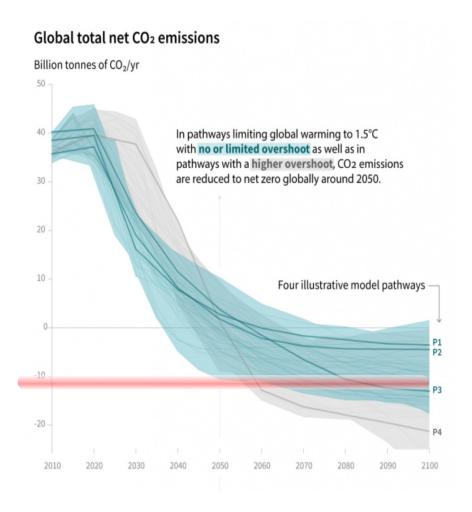


Horizons – Setting the Context

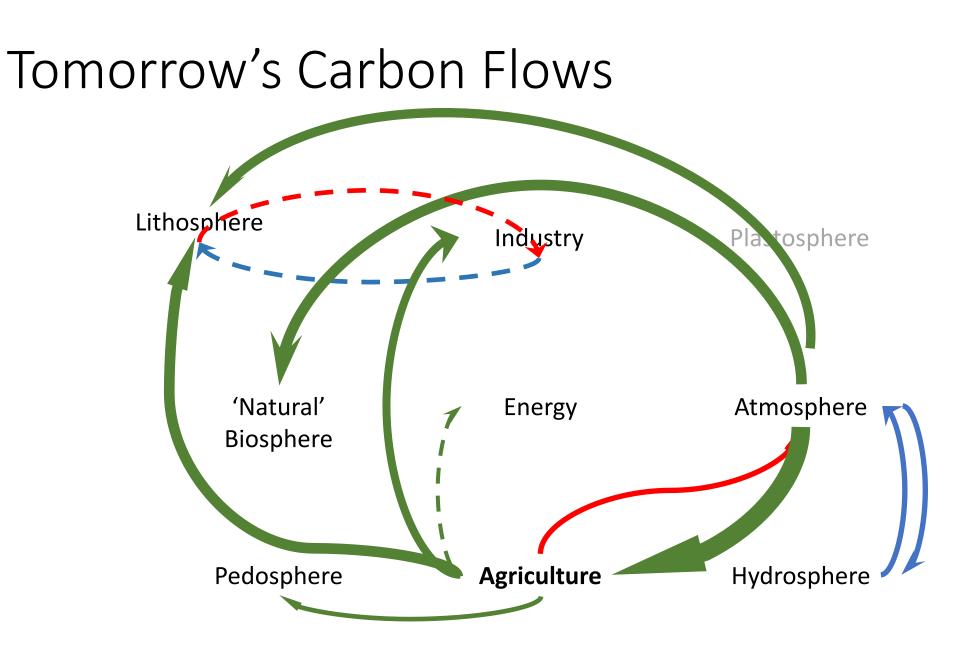
- England is a small part of a small archipelago of the West coast of a small peninsular of Asia.
- 'I don't skate to where the puck is, I skate to where the puck is going to be". Wayne Gretsky – ice hockey star


Key questions for biobased energy storage

- What is bio-based storage better at than everything else?
- Is it the best use of the carbon?
- Is there enough of it to make a difference?


'Bio' means Carbon Today's Anthropogenic Carbon Flows

The Future of Carbon



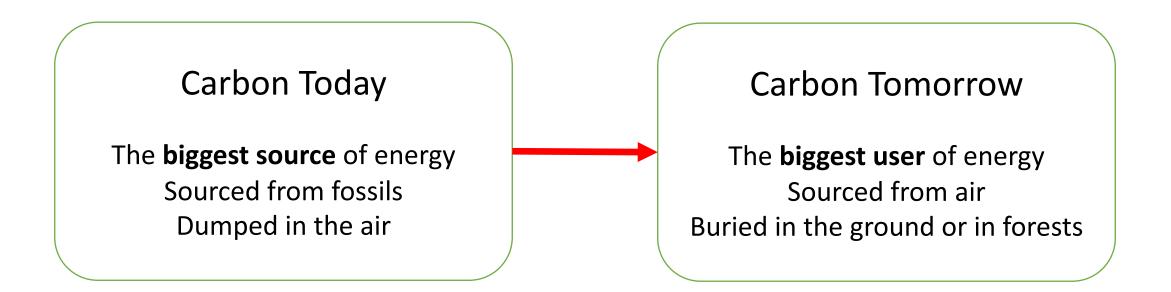
	Carbon	CO2
Sequestration	2.7 Gt/y	10 Gt/y
Industry	1.2 Gt/y	4.5 Gt/y
TOTAL	3.9 Gt/y	14.5 Gt/y

DAC - Energy Is The Big Issue

- By 2050 we will need >50PWh per year for carbon management and supply
- This is 30% of current global energy use, and twice current global electricity use
- In addition there is the steel needed, and other equipment
- DAC could consume most of the world's resources by 2050

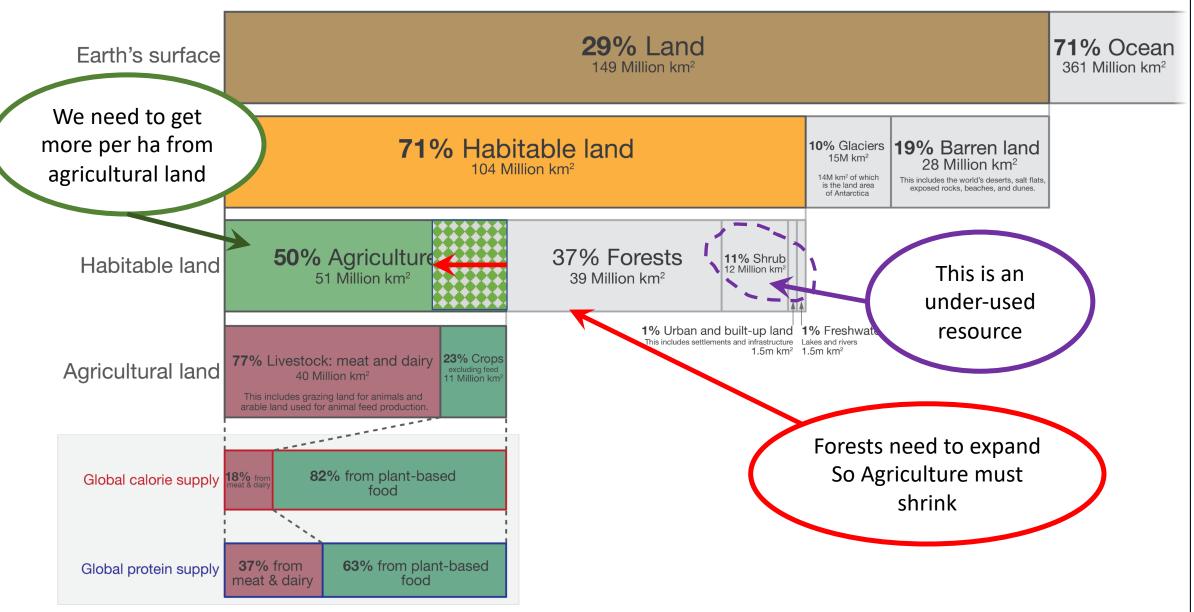
Carbon for product (Smith School - Ox) CO2 for polymers etc CO2 drawdown needed (IPCC) CO2 capture energy (WRI) Energy needed to make Hydrogen

1.2E+09 tonnes/yr 4.40E+09 tonnes/yr 1.00E+10 tonnes/yr 7.20E+09 J/tonne 1.50E+11 J/tonne


H2 needed Energy needed to make Hydrogen	6.00E+08 tonnes/yr 9.00E+19 J/yr
CO2 capture tonnage Energy needed	1.44E+10 tonnes/yr 1.04E+20 J/yr
Total energy need	1.94E+20 J/yr
	53.80 PWh/yr
Global energy consumption today	160.00 PWh/yr

Carbon – A Changed Future

- Negative CO2 and industrial carbon need to come from the air
- 14.5Gt/year using Direct Air Capture needs us to mechanically handle and chemically treat 1 million tonnes of air a second for a long time



How Much Agricultural Carbon is There?

- Two major resources
 - Crop Wastes
 - CAM plants
- Conventional crop wastes can only deliver 33% of global carbon needs at maximum
 - but in reality at least half of that needs to go back to the fields
 - so there will be little conventional carbon spare for

	Total Residues (Mtpy)	Total Carbon (Mtpy)
Barley	210	90
Rice Straw	890	400
Wheat Straw	870	390
Corn Straw	600	270
Sugar Cane	310	140
Total		1,290

Global land use for food production

Data source: UN Food and Agriculture Organization (FAO)

OurWorldinData.org - Research and data to make progress against the world's largest problems.

Our World

in Data

Leveraging that Carbon

Opportunity costs are dominant and rarely considered

Reforestation means displacing agriculture

Table 1 | COCs and global PEMs of major crop and livestock products

	COC ^a (kg CO ₂ per kg fresh weight)	PEMs (kg CO ₂ e per kg fresh weight)	Total (kg CO ₂ e per kg fresh weight)	Total (g CO ₂ e per kcal ^c)	Total (kg CO ₂ e per kg protein)
Maize	2.1	0.46	2.6	0.82	29
Rice (rough)	2.6	2.17	4.8	2.0	69
Wheat	1.9	0.69	2.6	0.9	23
Cassava	1.7	0.04	1.7	1.6	160
Potato	0.6	0.09	0.7	1.1	38
Soybeans	5.9	0.26	6.1	1.5	17
Pulses	10.5	0.55	11	3.1	47
Vegetable oils	9.7	1.3	11	1.2	Not applicable
Beef ^b	144	44	188	102	1,250
Cow milk	6.2	2.3	8.4	13.1	260
Pork	14	5.5	20	9.4	150
Poultry meat	11	3.7	14	8.4	110

Values are calculated using the carbon loss method and 4% time discounting.

^aIncludes peatland emissions.

^bAverage, including meat from dairy animals.

^c1 kcal = 4,184 J.

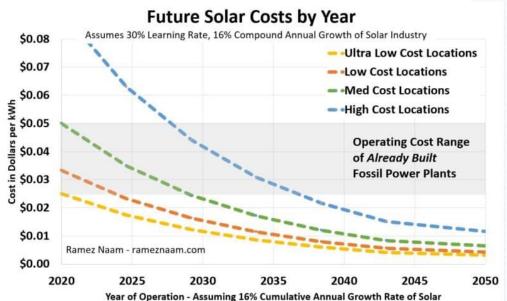
Searchinger, Timothy D., Stefan Wirsenius, Tim Beringer, and Patrice Dumas. 2018. "Assessing the Efficiency of Changes in Land Use for Mitigating Climate Change." *Nature* 564 (7735): 249–53.

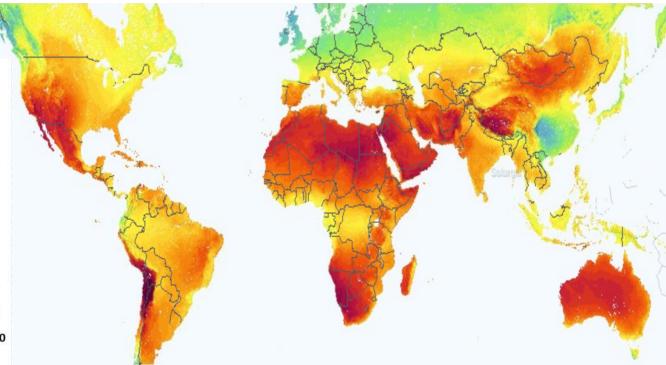
Finding Space for Forests Replacing Crops with Bugs!

- Use unconventional carbon sources
 - Agricultural wastes like straw
 - CAM plants grown on semi-arid land
- Precision fermentation with micro-organisms to produce Protein and fat Rich Cells (PRCs)
- Use PRCs to replace 300 Mt/y of soy meal[®] used as animal feed
- Every tonne of PRC gains >8 tonnes of CO₂ from avoided deforestation or reforestation – 2.5Gt CO₂ potential
- Other crops could also be replaced R&D needed

CAM Plants – A Primer

- Crassulacean Acid Metabolism (CAM)
 - CAM plants need 20% of water of normal plants
 - They are exceptionally efficient nutrient users
 - Able to grow on semi-arid, often degraded lands
 - Minimal competition with agriculture
- CAM plants like wheat 8,000 yrs ago
 - 16,000 species but none as major crops
 - Little serious investigation or development
- CAM plants are unrecognised supercrops

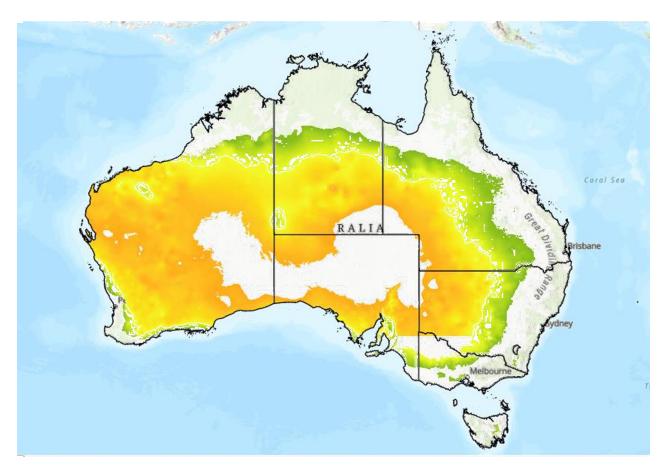

Using Biocarbon – the Need for Hydrogen



- Carbon is too precious to waste so all carbon from a plant needs to be used productively or sequestered
- All biology used to process biomass produces CO2, so to make maximum use of carbon you need hydrogen to carry off the oxygen, or you need to sequester it.
- This makes any energy vector using all available carbon expensive unless it is done where there is very low cost electricity
- The lowest cost of electricity on the planet is, and will for a long time, be solar PV

CAM Plants and Solar Correlate Well

- With a few notable exceptions most Solar and CAM plant potential is not where people live it is too hot and dry.
- This argues for biocarbon being converted to <u>transportable</u> biofuels once all food needs are met



Australia – A CAM plant superpower

- Map of Australian pasture zone 200-600mm irregular rainfall
- Queensland alone 90M ha with 6Bn tonnes of CO₂ capture potential per year
- Australia could probably meet the entire global carbon needs

But Australia has Other Options

- Using biofuel results in CO2 which usually goes to atmosphere or has to be captured from a chimney – not a good plan!
- Ammonia could be the next global reserve fuel
 - No carbon losses
 - As cheap to make per GJ as biofuels
 - Easy to transport and looking easy to burn or use in fuel cells
 - Early work suggests we can do it very safely
- Australia will make massive quantities of ammonia – displacing the need for biofuels

NH₃ powered bus – Brussels 1943

Not just electricity!

Ammonia can tackle some of the difficult to decarbonize sectors

Bio, Energy and Storage?

Back to the question

Storage Problems to Solve Moving energy in time and place

Power and Heat - Moving in Time

Very long term (multidecadal)

Seasonal storage

Short term - Intra-day to weekly

Mobile Energy – Moving in Place

Shipping

Heavy plant and equipment

Cars

Aviation

Storage Problems to Solve Moving energy in time and place

Power and Heat – Moving in Time

Very long term (multi- decadal)	Hydrogen in geological storage, Ammonia shipped globally
Seasonal storage	Hydrogen and Ammonia
Short term - Intra-day to weekly	Batteries, liquid air, hydrogen, ammonia

Mobile Energy – Moving in Place

Shipping	Ammonia, possibly some bio-derived fuels
Heavy plant and equipment	Batteries, Ammonia, possibly some bio-derived fuels
Cars	Batteries
Aviation	Some Hydrogen, Ammonia, bio-derived fuels

To Summarise

- Carbon is valuable we can't afford to waste a single atom
- Forests are key to our survival using land to grow energy crops has HUGE carbon opportunity costs
- In any assessment of the carbon benefits of bio-energy and storage the carbon opportunity costs will dominate
- CAM plants could allow better use of marginal and degraded lands, and provide an opportunity for bioenergy stores
- Stored bioenergy will almost certainly be high value transportable liquids
- The competition will be **Ammonia**

Thank you

mike.mason@carbonovia.com