Electric vehicles on world’s roads expected to increase to 145m by 2030 – Guardian

Under existing climate policies, electric vehicles could wipe out use of 2m barrels a day of diesel and petrol

An electric car is charged by a mobile charging station on a street in Prague, Czech Republic.
An electric car is charged at a mobile station in Prague, Czech Republic. Photograph: David W Černý/Reuters

The number of electric cars, vans, trucks and buses on the world’s roads is on course to increase from 11m vehicles to 145m by the end of the decade, which could wipe out demand for millions of barrels of oil every day.

A report by the International Energy Agency has found that there could be 230m electric vehicles worldwide by 2030 if governments agreed to encourage the production of enough low-carbon vehicles to stay within global climate targets.

The IEA’s first global report on electric vehicles has found that sales in the first quarter of 2021 were more than 2.5 times higher than in the same months last year, when the Covid-19 pandemic triggered a string of recessions across global economies.

Despite the economic slowdown, which caused the global car industry to shrink by 16% last year, a record 3m new electric cars were registered around the world last year, to bring the total to 10m electric cars. There are also approximately 1m electric vans, heavy trucks and buses.

Read the full article here.

The role of ‘longer-duration storage’ in the future of energy

Highview Power’s liquid air energy storage (LAES) is being deployed at a 50MW / 250MWh site, with a portion of the costs supported by the UK government. Image: Highview Power.

What are the best ways to match up long-duration energy storage technologies to applications and revenues? And what is ‘longer-duration’ storage and when will we need it? Florian Mayr and Dr Fabio Oldenburg at Apricum – The Cleantech Advisory offer some perspectives. This is a short extract of an article which originally appeared in Vol.26 of PV Tech Power, our quarterly journal and can be found in the Storage & Smart Power section contributed to each edition by the team at Energy-Storage.news. 

Between five and more than 1,000 hours of energy discharge – that’s what the term “long-duration energy storage” encompasses in the industry today. It’s a very broad definition that covers a wide array of storage technologies and use cases.

An increasing number of projects within this diverse space has been announced over the last few months. UK transmission system operator National Grid ordered a 50MW overground liquid air energy storage (LAES) system with a five-hour discharge duration from Highview Power that will be connected to the grid in 2022.

Read the full article here.

Global Energy Review 2021 by IEA

The Global Energy Review 2021 will provide insights on the evolution of energy demand by fuel and region, and their related CO2 emissions, in 2021. Building on IEA analysis of the impacts of the Covid-19 on global energy demand in 2020, the report analyses the potential pathway for energy demand over the course of 2021 and its implications for CO2 emissions. Drawing on the latest statistical data and economic forecasts for 2021, the Global Energy Review 2021 will explore the factors affecting demand for electricity, oil, natural gas, coal, renewables and nuclear power.

You can download the report here.

Podcast: The rise of long-duration energy storage and lessons on floating solar from Asia

Solar Media’s Liam Stoker, Andy Colthorpe and Jules Scully profile the continued rise of long-duration energy storage in this episode of the Solar Media Podcast, sponsored by Honeywell, with a definitive look at the technology, policy and use-cases driving interest in long-duration energy storage. More information is available here.

The podcast can be streamed below:

A global assessment of net zero targets by The Energy & Climate Intelligence Unit and Oxford Net Zero

Taking Stock: A global assessment of net zero targets

In the report Taking Stock: A global assessment of net zero targets it is presented what is, the first quantitative analysis of net zero commitments across countries, sub-national governments and major companies. Energy & Climate Intelligence Unit teamed up with Oxford Net Zero, and surveyed more than 4,000 significant entities: all nations; all states and regions in the 25 highest-emitting countries; all cities with a population above 500,000; and all companies in the Forbes Global 2000 list.

Together, jurisdictions with net zero targets now represent at least:

Percentage of greenhouse gas emissions, GDP and population covered by national net zero pledges.

It was found that already 61% of countries, 9% of states & regions in the largest emitting countries and 13% of cities over 500k in population have now committed to net zero. Of the world’s 2,000 largest public companies, at least one-fifth (21%) now have net zero commitments, representing annual sales of nearly $14 trillion. A majority of these companies also have interim targets, a published plan and a reporting mechanism, with just over a quarter meeting a full set of ‘robustness criteria’.

Read the full article here.

Taking Stock presents a long-overdue ‘opening snapshot’ of net zero that will allow the robustness of targets to be tracked and assessed over time. Download the full report here to find out more.

Making plans for a hydrogen ‘backbone’ across Britain by National Grid

As Britain works toward reaching net zero by 2050, hydrogen is one solution to decarbonising our gas system. Project Union is National Grid’s development of a hydrogen ‘backbone’ to link industrial clusters around the country.

We are exploring the development of a UK hydrogen ‘backbone’, which aims to join together industrial clusters around the country, potentially creating a 2000km hydrogen network.

Repurposing around 25% of the current gas transmission pipelines, Project Union will build on the government’s 10-point plan to invest more than £1 billion to unlock the potential of hydrogen and support the establishment of carbon capture, utilisation and storage (CCUS) in four industrial clusters.

It’s anticipated that the backbone could carry at least a quarter of the gas demand in Great Britain today, ensuring reliable, affordable and decarbonised energy for homes and businesses.

The project is exploring a hydrogen backbone connecting the Grangemouth, Teesside and Humberside clusters, as well as linking up with Southampton, the North West and South Wales clusters. As the clusters develop, we’ll be ready to join them up.

Using net zero development funding, we are financing a portfolio of net zero projects. One of these is the feasibility phase of Project Union, which will include: identifying pipeline routes; assessing the readiness of existing gas assets; and, determining a transition plan for assets in a way that supports the country’s net zero ambition.

The research will explore how we can start to convert pipelines in a phased approach by the end of the decade, aligning with government ambitions of producing five gigawatts of low-carbon hydrogen by 2030.

National Grid Project Union hydrogen backbone storyProject Union will also look at how to connect the backbone to the existing interconnectors coming into Bacton gas terminal in Norfolk, so allowing the UK to link with the EU hydrogen backbone that is also being developed – this could open up future import and export of hydrogen with European neighbours.

Read the full article here.

Energy storage technology is accelerating – but grids aren’t ready for the transition

Thanks in part to the pandemic-induced economic slowdown and the collapse of coal and triumph of wind power over the last decade, a new analysis suggests the UK is halfway to meeting its net zero greenhouse gas emissions target. The ultimate goal of a fully renewable grid will depend on technology that can store clean electricity from wind farms for hours and days.

Since I began writing about energy storage in 2013, falling costs have prompted a surge in batteries being installed around the world. Just as silos store excess grain on farms for when it’s needed during lean periods, grid batteries store additional energy so that it can be used to keep the lights on when supply fails to match demand.

Historically, fossil fuels have provided that buffer in the energy system. Coal, oil and gas can be burned whenever needed to keep people driving, heating homes and turning on appliances. But tackling climate change will mean shifting to renewable energy generation – which can be patchy when the sun isn’t shining and the wind isn’t blowing – and swapping gas boilers and combustion engines for alternatives powered by clean electricity.

Read the full article here.

Thermo-mechanical technologies offer promise as grid-scale electricity storage

A new international review of bulk electricity storage technologies highlights the potential of thermo-mechanical energy storage.

Thermo-mechanical energy storage (TMES) technologies can offer a reliable, low-cost solution as grid-scale electricity storage, according to a comprehensive review led by researchers at Imperial College London.

The research, published in Progress in Energy, examines recent progress in the advancement of a range of TMES technologies, including compressed-air energy storage, liquid-air energy storage and pumped-thermal electricity storage.

Using a combined approach comprising validated thermodynamic models and estimates from multiple costing approaches, the researchers compared the technical and economic characteristics of these technologies and assessed their competitiveness against other bulk energy storage options such as flow batteries and pumped-hydro energy storage.

“This is the first time a detailed techno-economic analysis of the main thermo-mechanical energy storage options has been performed for a large range of sizes under a unified modelling framework,” says Andreas Olympios from the Department of Chemical Engineering.

The need for storage

Variable renewable energy sources such as wind and solar now account for just over a quarter of global electricity generation, a share that is growing steadily, creating new challenges for electricity grids.

Read the full press release here.

Longer-Duration Energy Storage: The missing piece to a Net Zero, reliable and low-cost energy future by REA

REA have today published a report into longer-duration energy storage.

The UK will need at least 30GW by 2050, but this target is currently undeliverable based on the present market and regulatory framework.

REA‘s Director of Policy, : Frank Gordon: “It’s clear that, in order to drive investment in this area, a new market mechanism is needed.”

Drax Group CEO, Will Gardiner: “With the right support framework from Government a new generation of pumped hydro storage power stations can be built, supporting new jobs and helping the country decarbonise faster.”

You can read REA’s report – ‘Longer-Duration Energy Storage: The missing piece to a Net Zero, reliable and low-cost energy future’ – here.

Long-duration ‘pumped heat energy storage’ startup Malta raises US$50 million in Series B round

Malta’s senior technical advisor Michael Geyer (left) and CEO Ramya Swaminathan (right), presenting the technology at an event a couple of years ago. Image: Malta Inc official YouTube channel screenshot.

Malta Inc, developer of a grid-scale electro-thermal energy storage technology, has closed a Series B funding round, raising US$50 million from investors that include Facebook co-founder Dustin Moskovitz.

The company claims its solution to the variable generation profile of renewable energy can provide storage of energy at large-scale for up to 200 hours, is scalable and relies on abundant materials, as well as combining processes from already-established and proven industries.

“Malta’s innovative application of well-established technologies and materials could accelerate the roll out of long-duration storage to support the transition to fully dispatchable renewable energy,” Dustin Moskovitz said.

Read the full article here.