PhD Studentship: Novel Zinc-air Battery by Additive Manufacturing (HUIO_U21SCIO)



Start date: 1 Oct 2021

Contract: Temporary

Supervisor: Dr Oscar Hui

Project description:

Applications are invited to School of Engineering for a PhD in the field of additive manufacturing and electrochemistry for energy storage.

High-performance electronics and electric vehicles have accelerated the development of advanced energy storage device such as metal-air batteries [1-3]. Secondary solid-state zinc-air batteries (ZABs) have demonstrated high energy density and better operational safety compared with some rechargeable batteries [4]. However, practical applications of ZABs are still seriously hindered due to the relatively poor performance of the air electrodes, such as sluggish reaction kinetics towards oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) and high overpotentials in both ORR and OER and hence low energy efficiency.

Considering that wearable electronics have become increasingly pervasive in daily life, the demand for solid-state energy storage devices is increasing [5]. This project aims to develop a novel additive manufacturing technology to print solid-state ZABs. The PhD candidate will prepare some nano-sized electrode materials with controllable physical, electrical and chemical properties. The candidate will determine how the properties of the electrode materials enhance the activity towards ORR and OER. Finally, the candidate will evaluate the performance of the solid-state ZABs in terms of specific capacity, rate performance, energy and power densities, and cycle life.


  1. X. Xu, K.S. Hui, D.A. Dinh, K.N. Hui, H. Wang, “Recent Advances in Hybrid Sodium-Air Batteries,” Materials Horizons, 6, pp. 1306-1335, 2019. This article is part of the themed collections: Recent Review Articles and Horizons Community Board Collection – Advanced Energy Storage Technologies
  2. X. Yu, Y. Kang, S. Wang, K.S. Hui, K.N. Hui, H. Zhao, J. Li, B. Li, J. Xu, L. Chen, H. Shao, “Integrating PtNi nanoparticles on NiFe layered double hydroxide nanosheets as a bifunctional catalyst for hybrid sodium–air batteries,” Journal of Materials Chemistry A, 8 (32), pp. 16355-16365, 2020.
  3. Y. Kang, S. Wang, Y. Liu, K.S. Hui, H. Li, K.W. Ng, F. Liang, J. Geng, X. Hong, W. Zhou, K.N. Hui, “Unveiling the Origin of Catalytic Sites of Pt Nanoparticles Decorated on Oxygen-Deficient Vanadium-Doped Cobalt Hydroxide Nanosheet for Hybrid Sodium–Air Batteries,” ACS Applied Energy Materials, 3 (8), pp. 7464-7473, 2020.
  4. Z. Cao, H. Hu, M. Wu, K. Tang, T. Jiang, “Planar all-solid-state rechargeable Zn–air batteries for compact wearable energy storage,” Journal of Materials Chemistry A, 7, pp. 17581-17593, 2019.
  5. S. Wu, K.S. Hui, K.N. Hui, “2D Black Phosphorus: from Preparation to Applications for Electrochemical Energy Storage,” Advanced Science, 5, pp. 1700491, 2018.

Person Specification:

2:1 in Chemistry

Funding notes:

This PhD project is in a competition for a 3 year UEA funded studentship covering stipend (£15,285 pa, 2020-21), tuition fees (Home only) and research costs. International applicants (EU/non-EU) are eligible for UEA funded studentships but they are required to fund the difference between Home and International tuition fees (which for 2021-22 are detailed on the University’s fees pages at

Please apply here.