Increasing the capacity factor of concentrated solar thermal power plants

July 15th, 2021

The Programme

The UK National Heat Transfer Committee is running a series of  free webinars on heat transfer related topics delivered by world-class academics and industry practitioners.​

Increasing the capacity factor of concentrated solar thermal power plants

Professor Kamel Hooman, University of Queensland – July 15th

Concentrated solar thermal (CST) power plant is a promising sustainable option for electricity generation with much lower carbon footprint compared with traditional fossil-fuel-based power plants. The primary challenge, however, is to increase the capacity factor by generating electricity at night and under overcast conditions. This can be addressed by integrating thermal storage units into CST plants. Hence, sensible energy storage systems, relying on molten salts or particles, are currently used in several CST plants. In parallel, latent heat thermal energy storage, through the use of phase change materials, is attracting attention for bringing about excellent CST performance as the PCMs have relatively higher heat capacity thanks to the use of heat of fusion and lower temperature difference during phase transition. However, the thermal conductivity of PCMs are very low which impedes the heat transfer rate to or from the circulating heat transfer fluid. That is, the charging and discharging processes (i.e. melting and solidification) of the power plant are prolonged. This presentation analyses heat transfer augmentation to/from high temperature PCMs for CST plants. Numerical, experimental and theoretical techniques are used for this purpose. Technical limitations, challenges and future research direction on low-cost thermal storage system for CST plants will be touched on.

+ GOOGLE CALENDAR+ ICAL EXPORT

Our partners